A Review- Nutritional Quality and Production of Chickpea

Huma Naz¹, Asma Naz², Shabbir Ashraf³ and Hadi Husain Khan⁴

¹Department of Plant Protection, Hamelmalo Agricultural College, Keren, Eritrea, (East Africa) ^{2,3}Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, U.P., India ⁴Regional Plant Quarantine Station, Amritsar, Punjab, India E-mail: ¹humanaz83@gmail.com

Introduction

Main source of protein for the vegetarian population of our society are pluses. Seed is the main edible part of the plant and is a rich source of protein, carbohydrates and minerals. Pulses play important roles on farms, in human diets and for the sustainability of agriculture. Smallholder farm households both consume and sell grain legume crop products. This flexibility enables farmers to manage their crops according to needs, and thereby their livelihood strategies (Shiferaw 2007; Lowenberg-DeBoer and Ibro 2008)

The dual role of pulses helps meet household needs and generate income by yielding valuable and diverse products, such as grains, oil, pods, peas, leaves, haulm, and press-cake. As a human food and livestock fodder and feed, grain legumes are in demand locally, and in urban and export markets. A wide range of processed products from these raw materials can add value and generate income-earning opportunities for poor people, especially women. (CGIAR, 2012).

Production of chickpea in India and the world:

Pulse production in India is facing a multitude of constraints. It has been recorded that about 92% of pulses in India are grown in rain fed areas. Erratic and uncertain behavior of monsoon affect timely sowing of these crops, which are normally opted out for marginal and sub marginal lands. (Upadhyay, *et al.*, 1998).

Currently, chickpea is grown in over 50 countries across the Indian subcontinent, North Africa, the Middle East, southern Europe, the Americas and Australia. Globally, chickpea is the third most important pulse crop in production, next to dry beans and field pea. (FAOSTAT (2011) http://faostat.fao.org/site/567/DesktopDefault.aspx. (Accessed 12th December 2011).

Chickpea (*Cicer arietinum*L.) is a major winter pulse crop in India and accounts for more than 43% of the world's chickpea production. Among the pulses, chick occupies 30% of area with 38% of annual production in India. It is grown largely on residual soil moisture in the post rainy season as a sole crop or mixed crop with wheat, mustard and sorghum. The chickpea seed provides a necessary protein supplement to the largely cereals-based vegetarian diets in the Indian subcontinent. (Ali and Sharma, 2002).

Four states viz., Madhya Pradesh, Rajasthan, Uttar Pradesh and Maharashtra together contribute 87% of the total area (Table 1). The area under chickpea has shown steady uptrend in Andhra Pradesh, Gujarat, Karnataka, Madhya Pradesh, Orissa, Maharashtra, Rajasthan and Tamil Nadu. Except Rajasthan, all other states in this category are located in Southern and Central zones. As far as the productivity rate is concerned, chickpea has observed considerable improvement from 611 kg/h in 1971-75 to 761 kg/h in 2007-08 (FAOSTAT, 2009).

 Table 1: Area and Production of chickpea in different states of India

State	Production (Lakh tonnes)	Area (Lakh hectares)	Yield (Kg per h)
Andhra Pradesh	96.4	142.5	679
Bihar	110.0	107.0	1028
Haryana	58.0	100.0	580
Gujrat	41.8	81.9	512
Karnataka	181.0	319.0	567
Maharashtra	580.0	932.0	622
Madhya Pradesh	2493.3	2748.1	908
Orissa	16.0	32.0	500
Rajasthan	677.9	975.3	695
Punjab	6.1	6.3	968
West Bengal	30.0	27.0	1111
Tamil Nadu	5.3	8.0	663
Uttar Pradesh	779.3	822.3	948

Source: Chickpea Research in India: Edited by Masood Ali, Shiv Kumar, N.B. Singh, IIPR, Kanpur, India.

Types of chickpea

There are two distinct types of cultivated chickpea, Desi and Kabuli. Desi (microsperma) types have pink flowers, anthocyanin pigmentation on stems, and a colored and thick seed coat. The kabuli (macrosperma) types have white flowers, lack anthocyanin pigmentation on stem, white or beige-colored seeds with a ram's head shape, thin seed coat and smooth seed surface(Moreno M &Cubero JI (1978). The seed weight generally ranges from 0.1 to 0.3g and 0.2 to 0.6g in desi and kabuli types respectively (Frimpong A, Sinha A, Tar'an B, *et al.* (2009). The desi types account for about 80-85% of the total chickpea area and are mostly grown in Asia and Africa (Pande S; Siddique K.H.M.; Kishore, G.K., *et al.* (2005). The kabuli types are largely grown in West Asia, North Africa, North America and Europe.

Origin and domestication:

Chickpea (*Cicer arietinum* L.) is thought to have originated in Anatolia (Turkey), where three closely related wild species *C. bijugum*, *C. echinospermum*, and *C. reticulatum*are commonly found in nature (van der Maesen, 1984). Chickpea seeds had been occasionally recovered in pre-historic sites in the Near East (Renfrew, 1973). However, Ramanujam (1976) reported that remnants of chickpea radiocarbon are dated at 5450 BC and there is evidence of its cultivation in the Mediterranean basin in 3000-4000 BC. The earliest record of chickpea in Northern India (Uttar Pradesh) dated at 2000 BC, and from the Southern India much later (Chowdhury *et al.*, 1971; Vishnu-Mittre, 1974).

Classification of chickpea		
Kingdom	Plantae	
Division	Magnoliophyta	
Class	Magnoliopsida	
Order	Fabales	
Family	Fabaceae	
Subfamily	Faboideae	
Genus	Cicer	
Species	C. arietinum	

Taxonomy of chickpea: Chickpea has been classified as follows:

Uses of chickpea:

Chickpea is a rich source of protein, its protein quality is limited by sulphur containing amino acids, methionine and cystine. Chickpea generally meets adult human requirement for all essential amino acids with trace amount of methionine and cystine and rich in fiber, minerals (phosphorus, calcium, magnesium, iron and zinc) and β -carotene (Table 2). Nutritional value of chickpea per 100 gram of edible portion showed in (Table 2) like amino acids, proximates, minerals, vitamins and lipids. Total amino acid composition of seed protein fractions of chickpea shown in (Table 3).

The levels of different protein fractions primarily control the essential amino acid compositon of chickpea seed proteins, nutritional composition of whole seed and dhal component of chickpea showed in table (Table 4), percentage of starch 47.3, protein 22, fat 5.3, sugar 5.8, ash 3.2, crude fiber 6.3 and dietary fiber 19 in whole seed and percentage of starch 56, protein 24.5, fat 5.7, sugar 4.9, ash 2.8, crude fiber 1.1 and dietary fiber 11.3 in dhal of chickpea.

Table 2: Nutritional value of chickpea per 100 gram of edible portion

edible portion			
Nutrient	Unit	Value per 100 grams	
Amino acids			
Tryptophan	g	0.185	
Threonine	g	0.716	
Isoleucine	g	0.828	
Leucine	g	1.374	
Lysine	g	1.291	
Tyrosine	g	0.479	
Cystine	g	0.259	
Valine	g	0.809	
Methionine	g	0.253	
Arginine	g	1.819	
Phenylalanine	g	1.034	
Tyrosine	g	0.479	
Alanine	g	0.828	
Histidine	g	0.531	
Glutamic acid	g	3.375	
Aspartic acid	g	2.270	
Serine	g	0.973	
Glycine	g	0.803	
Proximates	5	0.005	
Water	σ	11.53	
Energy	g kj	1525	
Energy	kcal	364	
Protein		19.3	
Ash	g	2.48	
Fiber, total dietary	g	17.4	
Total lipid (fat)	g	6.04	
Carbohydrate, by difference	g	60.65	
Sugars, total	g	10.7	
Minerals	g	10.7	
Calcium,Ca	ma	105	
Magnesium, Mg	mg	115	
Manganese, Mn	mg	2.204	
Iron, Fe	mg	6.24	
Sodium, Na	mg	24	
Potassium, K	mg	875	
	mg	366	
Phosphorus, P	mg	3.43	
Zinc, Zn	mg		
Copper, Cu	mg	0.847 8.2	
Selenium, Se	μg	8.2	
Vitamins Vitamin C, tatal according agid		A	
Vitamin C, total ascorbic acid	mg	4	
Riboflavin	mg	0.212	
Thiamin Dentethenia esid	mg	0.477	
Pantothenic acid	mg	1.588	
Niacin	mg	1.541	
Folate, food	μg	557	
Folate, total	μg	557	
Vitamin B-6	mg	0.535	

Choline, total	μg	95.2
Folate, DFE	μg_DFE	557
Vitamin A, RAE	µg_RAE	3
Vitamin B-12	μg	0
Carotene, beta	μg	40
Retinol	μg	0
Lycopene	μg	0
Vitamin A, IU	IU	67
Vitamin K (phylloquinone)	μg	9
Vitamin E (alpha tocopherol)	mg	0.82
Lipids		
Fatty acids, total saturated	g	0.626
14:00	g	0.009
16:00	g	0.501
18:00	g	0.085
Fatty acids, total monounsaturated	g	1.358
16:1 undifferentiated	g	0.012
18:1 undifferentiated	g	1.346
Fatty acids, total polyunsaturated	g	2.694
18:2 undifferentiated	g	2.593
18:3 undifferentiated	g	0.101
Phytosterols	mg	35
		CTT: A 1 1 1 4

IU: One International Unit of Vit-A = 0.3 mg of Vit A alcohol; * Rao and Rao (2007).

Source: USDA National Nutrient Database for Standard Reference, Release 22 (2009)

 Table 3: Essential amino acid composition of seed protein fractions of chickpea.

Amino acid	Protein fraction (g/100 g protein)			
	Albumin	Globulin	Glutelin	Prolamin
Lysine	10.8	6.4	6.8	2.3
Methionine+Cystine	5.3	1.8	2.6	1.5
Phe + Try	9.3	9.0	8.1	5.7
Valine	4.5	4.2	5.7	2.1
Threonine	5.4	3.5	5.7	2.2
Leucine	9.8	7.5	9.1	1.6
Isoleucine	5.1	4.4	5.4	2.3

 Table 4; Nutritional composition of whole seed and

 Dhal component of chickpea.

Constituent (%)	Whole seed	Dhal
Value (Kcal)	347.6	360.8
Starch	47.3	56.0
Protein	22.0	24.5
Fat	5.3	5.7
Sugar	5.8	4.9
Ash	3.2	2.8
Crude fiber	6.3	1.1
Dietary fiber	19.0	11.3

Source (Table 5-6): Chickpea Research in India: Edited by Masood Ali, Shiv Kumar, N.B. Singh, IIPR, Kanpur, India.

The dual role of pulses helps meet household needs and generate income by yielding valuable and diverse products, such as grains, oil, pods, peas, leaves, haulm, and press-cake. As a human food and livestock fodder and feed, grain legumes are in demand locally, and in urban and export markets. A wide range of processed products from these raw materials can add value and generate income-earning opportunities for poor people, especially women. (CGIAR, 2012).

Medicinal uses

- Among the food legumes, chickpea is the most hypocholesteremic agent; germinated seeds are reported to be effective in controlling cholesterol level in rats (Geervani, 1991)
- Glandular secretions of the leaves, stems and pods consist of malic and oxalic acids giving a sour taste. In India these acids are used to be harvested by spreading thin muslin over the crop during the night. In the morning the soaked cloth is wrung out and the acids are collected in bottles. Medicinal applications include use for aphrodisiac, bronchitis, catarrh, cutamenia, cholera, constipation, diarrhea, dyspepsia, flatulence, snakebite, sunstroke and warts. Acids are supposed to lower the blood cholesterol levels. Seeds are considered antibilious (Duke, 1981).

References

- Ali, M; Kumar, S. and Singh, N.B. (2003). Chickpea research in India . IIPR, Kanpur, India, pp. 344.
- [2] Bakhru, H.K. (1994). "Foods that heat the natural way of good health orient paper backs", New Delhi.
- [3] CGIAR, Research Programme on grain legume (2012), pp. 14,
- [4] Duke, J.A. (1981). Handbook of legumes of world economic importance. Plenum Press, New York. pp. 52-57.
- [5] FAOSTAT,(http://faostat.fao.org/site/567/DesktopDefault.aspx).(Ac cessed 12th December 2011).
- [6] FAOSTAT. 2009. Derived from data supplied by United Nations Food and Agriculture Organization, FAOStat (January 2010). Source: http://faostat.fao.org/site.
- [7] Frimpong, A; Sinha, A; Tar'an, B. (2009) "Genotype and growing environment influence chickpea (*Cicerarientinum* L.) seed composition". J. Sci Food Agric (89): 2052-2063.
- [8] Geervani, P. (1991). "Utilization of chickpea in India and scope for novel and alternative uses. In: Uses of Tropical Grain Legumes": Proceedings of Consultants Meeting (27-30 March, 1989). ICRISAT Center, Patancheru, AP, India. pp. 47-54.
- [9] Lowenberg-DeBoer, J and Ibro, G. (2008). A study of the cowpea value chain In Kano State, Nigeria from a pro-poor and gender perspective. Washington, DC: USAID, Nigeria,GATEProject,http://www.nigeriamarkets.org/files/GATE_C owpeas_Final%5B1%5D.pdf.
- [10] Moreno, M.T.; Cubero, J.I. (1978) "Variation in *Cicer arietinum* L. Euphytica", 27: 465-485.
- [11] Pande, S; Siddique, K.H.M.; Kishore, G.K. (2005) "Ascochyta blight of chickpea: biology, pathogenicity and disease management". Aust J. Agric Res 56: 317-332.
- [12] Rao, A.V. and Rao, L.G. (2007). Tomatoes, lycopene and human healt preventing chronic diseases. Caledonian Science Press, Toronto. 209-210.
- [13] Shiferaw, B; Silim S; Muricho, G; Audi, P; Mligo, J; Lyimo, S; You, L and Christiansen, J. (2007) "Assessment of the adoption and impact of improved pigeonpea varieties in Tanzania", SAT e Journal 5 (1): 1-27.
- [14] Upadhyay, R.K.; Mukherji, K.G.; Rajak, R.L. (1998). IPM system in agriculture, Pulses published by Kailash balani for Aditya Books Pvt. Ltd., Delhi. (4): 487.